netkit lab

bgp: multi-homed-stub-large

<table>
<thead>
<tr>
<th>Version</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>G. Di Battista, M. Patrignani, M. Pizzonia, F. Ricci, M. Rimondini</td>
</tr>
<tr>
<td>E-mail</td>
<td>contact@netkit.org</td>
</tr>
<tr>
<td>Web</td>
<td>http://www.netkit.org/</td>
</tr>
<tr>
<td>Description</td>
<td>a multi-homed stub network running rip</td>
</tr>
</tbody>
</table>
copyright notice

- All the pages/slides in this presentation, including but not limited to, images, photos, animations, videos, sounds, music, and text (hereby referred to as “material”) are protected by copyright.
- This material, with the exception of some multimedia elements licensed by other organizations, is property of the authors and/or organizations appearing in the first slide.
- This material, or its parts, can be reproduced and used for didactical purposes within universities and schools, provided that this happens for non-profit purposes.
- Information contained in this material cannot be used within network design projects or other products of any kind.
- Any other use is prohibited, unless explicitly authorized by the authors on the basis of an explicit agreement.
- The authors assume no responsibility about this material and provide this material “as is”, with no implicit or explicit warranty about the correctness and completeness of its contents, which may be subject to changes.
- This copyright notice must always be redistributed together with the material, or its portions.
interior gateway protocols

- rip is used:
 - within as20 to propagate reachability information about the next-hops
 - within as100 as an internal routing protocol
router as100r1 configuration

zebra rip configuration file

```bash
router rip
network 100.1.0.0/16
redistribute bgp
```

- talk rip on some interface
- send distance vector packets through interfaces falling into the specified prefix
- redistribute bgp-learned routes to rip neighbors
router as100r2 configuration

zebra rip configuration file

```
router rip
network 100.1.0.0/16
redistribute connected
```

- talk rip on some interface
- send distance vector packets through interfaces falling into the specified prefix
- redistribute connected networks to rip neighbors
 - the network that is directly connected to a rip enabled interface is automatically inserted in the local rip routing table
routing table

- rip routing table on as100r1

```
as100r1:~# telnet localhost ripd
.....
User Access Verification
Password:
ridp> show ip rip
Codes: R - RIP, C - connected, O - OSPF, B - BGP
   (n) - normal, (s) - static, (d) - default, (r) - redistribute, (i) - interface

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>From</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(r) 0.0.0.0/0</td>
<td>11.0.0.2</td>
<td>1</td>
<td>self</td>
<td></td>
</tr>
<tr>
<td>C(i) 100.1.0.0/30</td>
<td>0.0.0.0</td>
<td>1</td>
<td>self</td>
<td></td>
</tr>
<tr>
<td>C(i) 100.1.0.4/30</td>
<td>0.0.0.0</td>
<td>1</td>
<td>self</td>
<td></td>
</tr>
<tr>
<td>R(n) 100.1.0.8/30</td>
<td>100.1.0.6</td>
<td>2</td>
<td>100.1.0.6</td>
<td>02:24</td>
</tr>
<tr>
<td>R(n) 100.1.2.0/24</td>
<td>100.1.0.6</td>
<td>2</td>
<td>100.1.0.6</td>
<td>02:24</td>
</tr>
<tr>
<td>R(n) 100.1.3.0/24</td>
<td>100.1.0.2</td>
<td>2</td>
<td>100.1.0.2</td>
<td>02:41</td>
</tr>
</tbody>
</table>

route distributed from bgp into rip
```
play with the network

- have a look at the routing tables of routers inside as100
 - does the 0/0 arrive on as100r2 and as100r3? why?
- try to ping/traceroute all the pairs of routers
- look for bgp updates in bgpd logs
- capture (bgp) packets on the routers
- create faults on collision domain E