Using Netkit, implement the network shown in the following picture, in such a way that full connectivity is ensured:

The left half of the network is assigned the subnet 100.150.0.0/16, whereas the right half is assigned the subnet 100.200.0.0/16. The left half of the network uses RIP as routing protocol, whereas the right half of the network uses OSPF (all the routers are assigned area 0.0.0.0).

In order to make the two halves communicate with each other through the link 10.20.150.0/24, carry on the following actions:

1. Using `route add`, insert into `as150r2` a static route towards 100.200.0.0/16 using `as200r1` as gateway.
2. Using `route add`, insert into `as200r1` a static route towards 100.150.0.0/16 using `as150r2` as gateway.
3. Besides existing configuration statements, add to the RIP configuration in `as150r2` and to the OSPF configuration in `as200r1` the statement `redistribute kernel` (which redistributes static routes added with the command `route add`).
Using Netkit, implement the network shown in the following picture, in such a way that full connectivity is ensured:

The left half of the network is assigned the subnet 100.150.0.0/16, whereas the right half is assigned the subnet 100.100.0.0/16. The left half of the network uses RIP as routing protocol, whereas the right half of the network uses OSPF (all the routers are assigned area 0.0.0.0).

In order to make the two halves communicate with each other through the link 10.20.150.0/24, carry on the following actions:

4. Using `route add`, insert into `as150r2` a static route towards 100.100.0.0/16 using `as200r1` as gateway.

5. Using `route add`, insert into `as200r1` a static route towards 100.150.0.0/16 using `as150r2` as gateway.

6. Besides existing configuration statements, add to the RIP configuration in `as150r2` and to the OSPF configuration in `as200r1` the statement `redistribute kernel` (which redistributes static routes added with the command `route add`).